
Zusammenfassung

Wir verwenden Computersimulationen, um die Selbstdiffusion von hantelförmigen Teilchen
in zweidimensionalen Flüssigkeiten mit hoher Teilchenkonzentration zu untersuchen.
Wir untersuchen den Einfluss des Füllungsgrades φ und der Struktur des Teilchens auf die
Diffusionseigenschaften. Wir berechnen die zeitlich gemittelte mittlere quadratische Ver-
schiebung (MSD), die Verschiebungswahrscheinlichkeitsdichtefunktion (PDF) und die
Verschiebungsautokorrelationsfunktion der Teilchen und vergleichen unsere Ergebnisse
mit denen einer ähnlichen Untersuchung sternförmiger Teilchen [1]. Das System weist
zwei unterschiedliche Diffusionsregime auf, die sich durch den Skalierungsexponenten des
MSDs, die Abhängigkeit des Diffusionskoeffizienten von φ und die Verschiebungsautokor-
relationsfunktion unterscheiden. Wir führen den Regimewechsel auf den Übergang von
einer viskosen zu einer viskoelastischen Flüssigkeit zurück. Wir zeigen auch, dass die
Schwingung der Partikel durch steigende φ unterdrückt wird. Hohe Füllungsgrade führen
zu nicht-gaußförmigen PDFs. Unsere Ergebnisse könnten verwendet werden, um Vorher-
sagen über die Diffusionseigenschaften von Teilchen mit einfacher Struktur zu machen.
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Abstract

We use computer simulations to study the self-diffusion of dumbbell-shaped particles
in crowded two-dimensional liquids. We investigate the effect of the crowding fraction
φ and the structure of the particle on the diffusion properties. We evaluate the time-
averaged mean squared displacement (MSD), the displacement probability density func-
tion (PDF) and the displacement autocorrelation function of the particles and compare
them to a similar study of star-shaped particles [1]. The system exhibits two different
diffusion regimes distinguished by the scaling exponent of the MSD, the dependence
of the diffusivity on φ and the displacement autocorrelation function. We attribute the
change of regimes to a crowded induced transition from a viscous to a viscoelastic liquid.
Also, we show that the vibration of the particles is suppressed by the crowding. High
crowding fractions give rise to non-Gaussian PDFs. Our findings could be used to make
predictions about the diffusion properties of simple crowders.
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1 Introduction

In 1827, botanist Robert Brown observed under a microscope the erratic and random
motion of particles ejected from pollen suspended in water [2]. About 80 years later,
Albert Einstein [3] came up with the theoretical description for this Brownian motion.
He derived the diffusion equation for a particle density under three assumptions. First,
the motion of a diffusing particle is independent from the motion of all other diffusing
particles. Second, the motions of a single particle in different time intervals are also
independent from each other. Third, the motion is symmetric in all directions. The
solution of the diffusion equation for a single particle starting at x(0) = 0 is the Gaussian
PDF

p(x, t) =
n√

4πDt
e

−x2

4Dt , (1.1)

where D is the diffusivity, x the position and t the time. Einstein then calculated the
second moment of this PDF, also known as the mean-squared displacement,

〈x2(t)〉 = 2Dt. (1.2)

The diffusion that arises from a motion that satisfies equations 1.1 and 1.2 is called stan-
dard Brownian diffusion. In addition, Einstein derived a relation linking the diffusivity
of a spherical particle to the temperature T , the viscosity η of the liquid and the radius
of the particle P

D =
kBT

6πηP
=
kBT

γ
. (1.3)

Here γ = 6πηP denotes the damping constant. Marian Smoluchowski independently
derived similar relations [4]. Hence, equation 1.3 is known as the Einstein-Smulochowski
relation.
In 1908, Paul Langevin derived equations 1.2 and 1.3 using a different approach [5].
Starting from Newton’s second law, he used Stokes’ drag and introduced a random force
ξ to set up a differential equation

m
d2x(t)

dt2
= −γdx(t)

dt
+ ξ(t). (1.4)

Today, this differential is known as the Langevin equation. Langevin made assumptions
about ξ that are equivalent to Einstein’s. A random force that satisfies these assumptions
is called white Gaussian noise. Langevin’s formulation of Brownian motion takes the
inertia of the particle into account. Thus, it can describe the short-time behaviour of
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Figure 1.1: A: Dumbbell-shaped dimer. B: Diluted system at φ = 0.05. C: Highly
crowded system at φ = 0.45.

the particle before diffusion sets in [6].
In recent years, deviations from standard Brownian motion have been observed in a

range of different systems. This anomalous diffusion is characterised by a generalisation
of equation 1.2

〈x2(t)〉 = 2Dβt
β, (1.5)

with a generalised diffusivity Dβ and the scaling exponent β. For β = 1, equation 1.2
is recovered. For 0 < β < 1, the motion the called subdiffusive and superdiffusive for
β > 1. Superdiffusion has been found in the cytoplasm of Acanthamoebae and was
attributed to active motion caused by myosin II motors and cell locomotion [7]. Con-
versely, subdiffusion is associated with passive motion in crowded environments such as
cytoplasm, in which crowding can reach values of φ ∼ 0.3 [8].
From a conceptual perspective, crowding is an obvious reason for anomalous diffusion
as an increased particle density causes more collisions between the diffusing particles.
Hence, the motion of different crowders cannot be seen as independent as assumed by
Einstein. Consequently, new models have been proposed to describe anomalous diffusion
[9]. These model include, among others, continuous time random walk [10], fractional
Brownian motion [11] and fractional Langevin equation [12], scaled Brownian motion
[13] and heterogeneous diffusion processes [14]. Similar to the diversity of anomalous
diffusion phenomena, numerous models exists and in a particular system multiple models
combined are used to describe the properties of the diffusion.
In non-biological colloidal systems, the crowding can reach even higher values leading
to a transition from a liquid to a amorphous solid, a glass transition [15]. In addition,
crowding has been shown to impede or felicitate polymer looping based on the size of
the crowders [16].
The dumbbell-shaped dimer (1.1) is the simplest example of a linear polymer crowder.
Thus, the effect of an additional particle interaction, compared to single colloidal parti-
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cles, can be examined. In comparison to diffusion of star-shaped crowders [1], the effects
of the complexity of the crowder structure can be elucidated.
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2 Model and Simulation

2.1 Physical model

In our model, we consider two-dimensional dumbbell-shaped dimers suspended in a
liquid. Each dimer, see figure 1.1, consists of two monomer disks of diameter σ that are
hold together by an elastic spring. The harmonic potential between the disks is

Uh(r) =
1

2
k (r − r0)2 , (2.1)

where r0 = 1.5σ is the equilibrium distance and k = 100kBT/σ
2 the spring constant.

Here kB denotes the Boltzmann constant and T the absolute temperature.

In addition, a Lennard-Jones Potential acts between all disks

ULJ(r) = 4ε

[
−
(σ
r

)6
+
(σ
r

)12
]
. (2.2)

The (σr )12 term models the hardness of the disks as it diverges quickly for r < σ. The
−(σr )6 term provides a weak attraction between the disks and thus between the dimers.

ε determines the maximal strength of this attraction present at r = 21/6σ ≈ 1.12σ. In
our model we use ε = 1kBT .

Accounting for the forces resulting from these potentials, the Langevin equation for
the position of the ith monomer disk ri is

m
d2ri(t)

dt2
= −γdri(t)

dt
−

N∑
j=1
j 6=i

∇
(
ULJ(rij)

)
Θ(2σ − r)−∇Uh(rik) + ξi(t). (2.3)

ξ(t) denotes Gaussian white noise with zero mean ξ(t) = 0 and correlation ξ(t)ξ(t′) =
4γkBTδ(t − t′), with γ the friction coefficient. The noise has two independent compo-
nents for each of the Cartesian coordinates.

All dimers are confined in a square box of area L2. However, we use periodic boundary
conditions, to allow for an unconfined motion of the dimers. The crowding in the box
for N dimers is quantified by the packing fraction φ

φ =
NA

L2
. (2.4)

Here A = 2 · π(σ2 )2 is the area of a dimer. In our study, the system size is L = 20σ. The
used N and corresponding φ can be seen in table 2.1.
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N 1 13 38 63 89 115 140 166

φ 0.004 0.05 0.15 0.25 0.35 0.45 0.55 0.65

Table 2.1: Used number of dimers N and corresponding packing fractions φ

2.2 Simulation

We simulate the system by solving equation 2.3 numerically using the Verlet velocity
algorithm.

xi(t+ ∆t) =
1

2
ai,x(t)∆t2 + vi,x(t)∆t+ xi(t) (2.5)

vi,x(t+ ∆t) =
ai,x(t) + ai,x(t+ ∆t)

2
∆t+ vi,x(t), (2.6)

with the integration time step ∆t = 0.005. For the acceleration ax(t) we use the forces
stemming from the interaction potentials from equation 2.3

ax(t) =

− N∑
j=1
j 6=i

∇ULJ(rij)−∇Uh(rik)


x

. (2.7)

Friction is considered according to [17] as γ-dependent coefficients and the noise is mod-
elled by correlated random displacements ξx(t) and ξvx(t)

xi(t+ ∆t) = cx1(∆t, γ)ai,x(t) + cx2(∆t, γ)vi,x(t) + xi(t) + ξx(t) (2.8)

vi,x(t+ ∆t) = cv1(∆t, γ)ai,x(t) + cv2(∆t, γ)ai,x(t+ ∆t) + cv3(∆t, γ)vi,x(t)

+ ξvx(t), (2.9)

with

cx1 =
γ∆t− 1− e−γ∆t

γ2
(2.10)

cx2 =
1− e−γ∆t

γ
(2.11)

cv1 =
1− e−γ∆t

γ
+

1− e−γ∆t

γ2∆t
+

1

γ
(2.12)

cv2 =
γ∆t− 1− e−γ∆t

γ2∆t
(2.13)

cv3 = e−γ∆t. (2.14)

In the limit γ → 0, the coefficients of equations 2.5 and 2.6 are recovered. We set γ to
unity in our simulations.
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The simulated trace length is Tsim = 108∆t. To give ∆t a physical meaning, we use the
standard combination [17]

200∆t = δτ = σ

√
m

kBT
≈ 1 ns, (2.15)

with the disk diameter set to σ = 6 ns, the mass estimated by the average mass of crow-
ders in the nucleolus [18] m ≈ 68 kDa and the temperature T = 272.15 K. Thus, the
simulated trace length in physical time is Tsim = 0.5 ms. In the following, all times are
expressed in units of δτ .

The simulation runs for a time Teq before the measurement starts, see figure 2.1. In
order to exceed the relaxation time of the crowders Tcr by two orders of magnitude, the
equilibration time is set to 2 · 104 for all φ. For Tcr, we use the estimation from [1]

Tcr =
(
Rcr/σ

)2/
Davg, (2.16)

where Rcr denotes the radius of the dimer and Davg its average diffusivity.

After Teq, we measure four observables of every dimer, the x and y coordinates of the
centre of mass of the dimers xc(t) and yc(t), the angle Θ(t) between the dimer and the x
axis, see fig, and the relative distance between the monomer disks within a dimer d(t).

Figure 2.1 shows a simplified flow chart of the simulation. After the initial set up
of the system, the integration loop is executed. In this loop, equations 2.8 and 2.9 are
repeatedly evaluated. The full source code can be found at [19].
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Figure 2.1: Simple flow chart of the simulation consisting of a system initialisation and
an integration loop
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3 Results

We use three approaches to analyse the data gained form the simulations to examine
the diffusion properties of the dumbbell-shaped dimers. First, we calculate and anal-
yse the time-averaged MSD. Second, the displacement probability density function is
investigated. Third, various displacement autocorrelation functions are computed. The
displacement δ is the difference between two values of an observable at two times sepa-
rated by the lag time ∆

δx(t,∆) = xc(t+ ∆)− xc(t) (3.1)

δy(t,∆) = yc(t+ ∆)− yc(t) (3.2)

δr(t,∆) = Θ(t+ ∆)−Θ(t) (3.3)

δd(t,∆) = d(t+ ∆)− d(t). (3.4)

In the following, only the results for δx are shown for the linear motion as δy displays
the same behaviour.

3.1 Time-averaged mean squared displacement

We begin by investigating the time-averaged MSD. First, we compute the translational
δi and rotational δr,i MSD of the ith dimer as [9]

δ2
i,x(∆) =

1

T −∆

∫ T−∆

0
δ2
i,x(t,∆) dt (3.5)

and

δ2
i,r(∆) =

1

T −∆

∫ T−∆

0
δ2
i,r(t,∆) dt. (3.6)

Then, we take the ensemble average over N trajectories

〈
δ2(∆)

〉
=

1

N

N∑
i=1

δ2
i (∆). (3.7)

11



10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

x2
(

)
/

2
 =  0.004

       0.05

       0.15

       0.25

       0.35

       0.45

       0.55

       0.65

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

r2
(

)
/r

a
d

2

A B

2 2

Figure 3.1: (A) Translational and (B) rotational mean time-averaged MSD of the centre
of mass of the dumbbell-shaped crowder for varying packing fractions φ.
Parameters: the inter-particle attraction strength is ε = 1kBT , the trace

length T = 5 · 105δτ ≈ 0.5 ms. The mean
〈
δ2(∆)

〉
is computed over N = 40

trajectories. The lag time ∆ in these and the following plots is given in units
of δτ ≈ 1 ns.

Figure 3.1 shows the translational and rotational time-averaged MSDs against the lag
time ∆ for varying crowding fractions φ. Three different behaviours can be distinguished.
Initially for ∆ < 0.1δτ , the diffusion is ballistic. The MSD appears the same for all
φ. The ballistic regime is typical for the motion of inertial particles, see figure 7.1.
Travelling only a fraction of σ, the motion of the dimers is not yet hindered by collisions
with neighbouring crowders. In the ballistic regime, the displacement grows linear which
can be interpreted as the dimers moving with a constant velocity. At intermediate lag
times ∆ ∼ 0.1 . . . 10δτ , a transition occurs. Based on φ, the MSDs start to split. This
transition is caused by the first collisions between the dimers. In the long time limit the
MSD grows linearly with ∆, following standard Brownian diffusion of equation 1.2.

3.1.1 Scaling exponent

To examine the φ-dependence of the MSD, the local scaling exponents βx, βr are calcu-
lated. We use the method of differentiating form [20]

βx(∆) =
d log

(〈
δx(∆)2

〉)
d log(∆)

(3.8)
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and

βr(∆) =
d log

(〈
δr(∆)2

〉)
d log(∆)

. (3.9)

10
-2

10
-1

10
0

10
1

10
2

10
3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x
(

)

 =  0.004

       0.05

       0.15

       0.25

       0.35

       0.45

       0.55

       0.65

10
-2

10
-1

10
0

10
1

10
2

10
3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r(
)

A B

Figure 3.2: (A) Translational and (B) rotational local scaling exponent for varying pack-
ing fractions φ.

As seen in figure 3.2, crowding has a profound impact on the intermediate behaviour
of the scaling exponent which starts earlier as anticipated from figure 3.1. In contrast,
the scaling exponent is initially 2 for all φ and at long times βx and βr tend to 1 for all
crowding fractions. The linear and rotational motion are fully correlated. We observe
subdiffusive values of βx and βr for the most crowded systems. The subdiffusion is more
pronounced for the rotation. In the more diluted systems the transition from the ballistic
to the linear regime follows standard Brownian diffusion, compare figure 7.1.

3.1.2 Diffusivity

In the long-time limit, βx and βr are not φ-dependent. Thus, the long-time φ-dependence
of the MSD must stem from the diffusivities which can be evaluated by

Dx =

〈
δx(∆)2

〉
2∆

(3.10)

and

Dr =

〈
δr(∆)2

〉
2∆

. (3.11)
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Using a linear fit of the MSD in the range ∆ = 102 . . . 104, the diffusivity is obtained by
the slope of the fit divided by 2.
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Figure 3.3: A: Normalised long-time translational and rotational diffusivity as a function
of the crowding fraction φ together with an exponential decay fit for small
φ and a quadratic fit for large φ. D0 = D(φ = 0.004). The normalisation is
with respect to D0 = D(φ = 0.004). B: Lin-log plot of the data and fits from
A.

Figure 3.3 shows the normalised translational and rotational diffusivities as functions
of the crowding fraction φ. Both diffusivities display similar behaviour. For small φ,
the diffusivity decays exponentially, see figure 3.3 B, as suggested in [21] for crowded
liquids. For large φ, however, we see a different dependence in figure 3.3 B. A power-law
dependence of the diffusivity was shown in [22] for a system of polydisperse hard disks
with a glass transition

D(φ) ∝ (φ− φ∗)2.4. (3.12)

Here φ∗ is the crowding fraction at which the glass transition occurs. In figure 3.3 we
plot these two dependencies as the best fits to their respective ranges of φ. A power
law with φ∗ ≈ 0.77 provides the best fit to our data. The crossover from exponential to
power-law dependence is located between 0.35 and 0.45. The same range at which the
subdiffusion starts to occur in 3.2.
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3.2 Displacement probability density function

The displacement PDFs p(δx) and p(δr) are obtained by sorting the displacements and
weighting each displacement with the same probability. We calculate the PDFs for
∆ = 0.1 . . . 80δτ .
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Figure 3.4: (A) Translational and (B) rotational displacement PDF for φ = 0.65 at
various lag times ∆.

The translational and rotational displacement PDFs are plotted in figure 3.4 for the
highest crowding fraction φ = 0.65. At ∆ = 0.1δτ both PDFs have the same parabolic
shape. However, with longer times the shapes of the PDFs differ. While the transla-
tional PDF remains its parabolic shape the rotational PDF becomes triangular. The
parabolic shape is a characteristic feature of lin-log plot of a Gaussian PDF. Another
shape indicates a non-Gaussian PDF.

3.2.1 Non-Gaussian parameter

To asses the shape of the PDF we use the non-Gaussian parameter G which is closely
related to the kurtosis

Gx =
Kurt[δx]

3
− 1 =

〈δ4
x〉

3(〈δ2
x〉 − 〈δx〉2)2

− 1. (3.13)

Here 〈δx〉, 〈δ2
x〉 and 〈δ4

x〉 represent the first, second and fourth moment of δx, respectively.
Gr is defined analogously.
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Figure 3.5: (A) Translational and (B) rotational non-Gaussian parameter plotted against
lag time ∆ for various packing fractions φ.

Figure 3.5 shows the lag time dependence of the non-Gaussian parameter for various
φ. Initially, the PDFs are Gaussian as Gx, Gr ∼ 1. Then, Gx, Gr increase and reach
a maximum at intermediate times. Approaching lag times of the standard Brownian
diffusion, G tends to 0 again. The most pronounced deviation from the Gaussian G of 0
occurs for φ = 0.65. The maximal translational non-Gaussian parameter is ∼ 0.2. The
maximum of Gr exceeds 0.2 significantly. It reaches ∼ 1, indicating a Laplacian PDF.

3.2.2 Second moment

To investigate if 1.5 holds also for non-Gaussian PDFs, we evaluate the second moment
〈δ2
x〉 of the displacement PDF by

〈δ2
x〉 =

∫ ∞
∞

δ2
x p(δx) dδx (3.14)

and analogously for the rotational displacement PDF.
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PDF as a function of lag time ∆ for varying packing fractions φ.

Figure 3.6 shows the lag time dependence second moment of the translational and
rotational displacement PDFs for various φ. The second moment displays the same
behaviour as the time-averaged MSD in the range of ∆ = 0.1 . . . 80.

3.3 Displacement autocorrelation function

As a third approach, we evaluate the displacement/velocity autocorrelation function Cx
for the translational displacement δx, the rotational displacement δr and the displace-
ment of the relative coordinate δr. With the time difference between two displacements
τ , the autocorrelation is obtained by

Cx(τ,∆) = vx(τ,∆)vx(0,∆) =
1

T −∆− τ

∫ T−∆−τ

0

δx(t+ τ,∆)δx(t,∆)

∆2
dt. (3.15)

Here ∆ is a fixed value of the lag time. The factor 1/∆2 stems from the definition of
the velocity

vx(t) =
∆x

∆t
=
x(∆ + t)− x(t)

t+ ∆− t
=
δ(t,∆)

∆
. (3.16)

In the following, we call τ outer and ∆ inner lag time. Cr and Cd are calculated
analogously.
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3.3.1 Translation and rotation
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Figure 3.7: Normalised (A) translational and (B) rotational displacement autocorrela-
tion function as a function of the outer lag time τ for varying crowding
fractions φ, with C(0) = vk(0)2. Parameter: the inner lag time is ∆ = 1δτ .

In figure 3.7, we present the translational and rotational displacement autocorrelation
function plotted against the outer lag time for varying φ. In general, Cx and Cr decay to
zero. The decay rate depends on φ. For small crowding fractions, this decay is monotone
while for the most crowded systems Cx and Cr display non-monotonic behaviour with a
minimum at τ = ∆. These anticorrelations indicate a reversal of the motion.

3.3.2 Relative coordinate

The normalised displacement autocorrelation function of the relative coordinate is plot-
ted against the outer lag time for φ = 0.004 in figure 3.8. The oscillations of Cd indicate
the vibration of the dimer and the exponentially decaying amplitude the damping due
to the environment. With increasing φ the damping also increases to the point where
the oscillation is almost completely suppressed, see figures 7.3 to 7.6. The φ dependence
of α is plotted in figure 3.9. To show the similarity of the behaviour compared to the
diffusivity, the inverse normalised decay constant is shown. Like the diffusivity, α de-
pends exponentially on φ. Only for the most crowded case we observe deviations from
the exponential behaviour.
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4 Discussion

Based on our results, the range of crowding fractions can be divided into two regimes.
First, for low φ (≤ 0.35) we observe standard Brownian diffusion in the form of the
scaling exponent 3.2 and the displacement correlation function 3.7. In this regime, the
crowding can be modelled as an effective damping constant γeff, compare figures 3.2 and
7.1. Using equation 1.3, γeff(φ) can be obtained form figure 3.3 and, as the diffusivity,
1/γeff depends exponentially on φ. Second, the subdiffusive scaling exponent and the
displacement correlation function that displays anticorrelations indicate anomalous dif-
fusion for high φ (>0.35). In this regime, the diffusivity decreases as a power law with φ.
A model that combines subdiffusion and anticorrelation is the anti-persistent fractional
Brownian motion (FBM) [23] as well as the related model of a motion governed by a
fractional Langevin equation without an external potential [24].

These models are associated with motion in viscoelastic environments [9, 25]. Thus,
we interpret the two regimes of crowding as a viscous liquid for low φ and as a vis-
coelastic liquid for high φ. A concentration-dependent transition between viscous and
viscoelastic diffusion was also proposed in [26]. We also observed this transition for the
diffusion of single unconnected monomers characterised by the crossover of the diffu-
sivity dependencies, see figure 7.2. Here, the transition occurs for higher φ as only the
Lennard-Jones potential can be the source of the elasticity. This comparison suggests
that more complex crowders such as a linear chain of three monomers should exhibit the
transition at smaller φ.

To further discuss the effect the dumbbell shape has on the diffusion, we highlight
key differences of our results compared to the results of the study of the diffusion of
star-shaped crowders. For the latter, transient subdiffusion occurs for all crowding frac-
tions, while only the most crowded dimer systems exhibit such behaviour. Similarly, the
power law dependence of the diffusivity was observed in [1] for all φ while we observe
this dependence only in the high φ cases. Moreover, the crowding fraction of the glass
transition φ∗ is smaller for the star-shaped crowders than for the dumbbell-shaped crow-
ders, ∼ 0.52 and ∼ 0.77, respectively.

These deviations can be traced back to different structures of the two crowders. The
inner monomer of the star, of which the movement is tracked, is connected to the three
other monomers by elastic springs. Thus, the environment of the inner monomer is
always, independently of the crowding, viscoelastic. In contrast, a monomer is only
connected to one other monomer, allowing for a viscous environment at low φ. The
difference in φ∗ between the two crowders can be explained by the simpler structure of
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the dimer felicitating a more dense packing before the glass transition occurs.

The damped-oscillating displacement autocorrelation, as we observe for the relative co-
ordinate, is typical for the standard Brownian motion of a harmonic oscillator [27], see
figure 7.6 B. This similarity is to be expected as equation 2.3 reduces to the Langevin
equation of a randomly driven harmonic oscillator when only a single dimer is considered.
In this diluted case, the Lennard-Jones interaction can be neglected as the distance be-
tween the two monomers is ∼ r0. In addition, [27] gives a meaning to the decay constant
α = γ/(2m). To preserve this relation, we again use the effective crowding constant
γeff(φ). Hence, the vibration of the dimer can be modelled as the oscillation of a ran-
domly driven harmonic oscillator with a crowding dependent effective damping constant.
Similar to the diffusivity, α decreases exponentially with φ in this regime of standard
Brownian diffusion. The deviation from this behaviour at large φ indicates another dif-
fusion regime. Due to the worse accuracy of the data of α, however, the transition is not
as clear. This regime might be modelled by a motion governed by a fractional Langevin
equation with an external harmonic potential [12].
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5 Conclusion

We simulated the diffusion of simple linear crowders and performed data analysis of
the measured observables. Our crowders consist of two monomers connected by an har-
monic potential allowing the dimer to vibrate. In addition, we implemented a weak
inter-crowder attraction.

We found two distinct diffusion regimes. For diluted systems, we found standard Brow-
nian diffusion with a Gaussian displacement PDFs and a exponentially decaying dis-
placement autocorrelation function. The effect of φ on the diffusion is modelled as
an effective damping. The damping is obtained from the diffusivity which decreases
exponentially with φ in this regime. Similarly, the damping of the vibration of the
dimers depends exponentially on φ. For highly crowded systems, we found transient
subbdiffusion, non-Gaussian PDFs and anticorrelated displacements. In this regime, the
diffusivity decreases like a power law with increasing φ. Some of these aspects might be
modelled by fractional Langevin equations.

We attribute the two different regimes to the crowding induced transition from a viscous
liquid to a viscoelastic liquid. To verify this hypothesis, further studies could include the
crowding dependence of the average inter-monomer forces or the number of interacting
neighbours, combining crowding and structure in a single quantity, as well as crowders
made up of three monomers in different shapes, e.g. linear and triangular. A Bayesian
analysis could determine the involved diffusion models [28]. In the end, predictions of
the diffusion properties based on the physical properties of the environment of a simple
crowder particle might be possible.
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Figure 7.1: A: MSD of the motion governed by equation 1.4 (equation (17) from [6]) for
varying damping constants, with kBT = 1 and m = 1. B: Scaling exponent
of the MSD from A, calculated by equation 3.8.

26



0.05 0.15 0.25 0.35 0.45 0.55 0.65
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
/D

0

0.05 0.15 0.25 0.35 0.45 0.55 0.65
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

lo
g

(D
/D

0
)

A B

Figure 7.2: A: Translational diffusivity as a function of φ. Obtained by 3.10 from the
MSD of the diffusion of single unconnected monomers. B: Lin-log plot of the
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Figure 7.3: Displacement autocorrelation function of the relative coordinate for (A) φ =
0.05 and (B) φ = 0.15. The red circles are the amplitudes in the following
plots.
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Figure 7.4: Displacement autocorrelation function of the relative coordinate for (A) φ =
0.25 and (B) φ = 0.35.
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Figure 7.5: Displacement autocorrelation function of the relative coordinate for (A) φ =
0.45 and (B) φ = 0.55.
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Figure 7.6: A: Displacement autocorrelation function of the relative coordinate for φ =
0.65. B: Normalised displacement autocorrelation function for the Brownian
motion of a harmonic oscillator (equation (50a) from [27]) with parameters
ω0 = 10 and β = 1.
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